

Determining Residual Flood Risk Associated with a Complex Levee System Fort Bend County, TX

AS A BAN 2017 2017

Jonathan Simm, Andre MacDonald and Ben Gouldby

1. The Fort Bend levee system

2. Background on system flood risk modelling

- What is it
- > What is its purpose
- What does it look like

3. Applying system flood risk modelling to Fort Bend

Phase 1 - Levee reliability analysis

4. Next steps

LEVEES EVERYWHERE There are 881 counties in the U.S. with levees. Those counties contain more than 50 percent of the nation's population.

Fort Bend County Floodplains

Fort Bend County Levees

- 19 Levee Districts in Ft. Bend County
- 99 miles of levees
- 27 miles of Brazos River levees
- Protect \$23+ billion in assessed taxable value
- 1 in 4 Fort Bend County residents lives behind a levee

What does a levee look like?

nd Flood Management Association

4 May 2017

What are levees? Or rather, what levees are not.

Flood Control Works

NOT JUST SOME BIG MOUND OF DIRT Not Landscape Berms Not Parks Not Hiking Trails Not Utility Corridors (Sometimes They Are) Not Power Company Roads

What level of protection do we have?

- FEMA Minimum Height 3' Freeboard above 100-yr BFE on Brazos River
- FBC Added an Additional 1-foot of Freeboard (Ft. Bend Foot)
- FEMA Recognizes 100-yr Protection on FIRMs
- Actual Overtopping Protection Above 500-yr Protection
- Some Districts Have Potential For Being Flanked (+/-500-yr)
- Internal Drainage Systems Designed for Local 100-yr Rainfall, with River well BELOW Flood Stages
- Pump Stations Designed for Coincidental Event
 - Local Rainfall while River is NEAR Flood Stages

Ft. Bend LID 2 Map

5,313 acres protected by levees

11.3 miles of earthen levee and 8.4 miles of drainage channels

Two storm water pump stations William "Bill" Little Pump Station

 4 pumps capable of a combined 240,000 gpm

Pump Station "F"

 4 pumps capable of a combined 80,000 gpm

Ft. Bend County Levee Improvement District No. 2

Special District established in 1975 to provide flood protection from the Brazos River and to convey storm water out of the District

\$4,815,810,202 assessed value of property and structures (2016)

About 10,000 homes and hundreds of business

Major transportation arteries – US 59 and SH 6

Sugar Land City Hall, Police, Fire, and Emergency Operations Center

Multiple hospital complexes

Major retail centers including Sugar Land Town Square and First Colony Mall

Flood Risk = probability of consequence

Traditional and risk-based approaches for flood systems

The Traditional (Deterministic) Approach

The Probabilistic (Risk-based) Approach

Full risk analysis approach (addresses both probability components)

Flood risk

 $= \left\{ Probability (Load) \times Probability (Breach \frac{and}{or} overtopping) \times Consequence (\$) \right\}$

Flood risk is constantly changing

Sugar Land

Drv

E

Attributing risk to levee system: Volume Tracking

Fort Bend Risk analysis: Levee segments

Segmentation by:

- Geo-technical information (borehole data).
- Crest-level
- Local features.

Identification of Limit State Equations (LSE's): RELIABLE Model

Failure mode	Failure mode description
External erosion	Erosion of rear face of an embankment due to overtopping, leading to down cutting and hence breach
Through-seepage	Seepage through levee in the embankment (based on steady state conditions) which could lead to piping.
Under-seepage	Piping under levee due to under seepage (based on steady state conditions), conditional on the following heave/uplift mechanism
Protected side heave	Heave/uplift behind levee due to under-seepage (based on steady state conditions)

Fort bend system risk modelling

Next steps

- Full dynamic system risk model
 - High resolution (sub-property level), dynamic, FSWE inundation modelling
 - Large numbers of extreme events
 - Large number of breach scenarios
 - Representation of full* probability space
 - Revised levee representation for multiple layers

Cloud

"Without flood control, nothing else matters." - Association of Levee Boards of Louisiana

André McDonald

Keeping

PROVEMEN

Sugar Land

Drv

Ben Gouldby

director1@fbclid2.com

b.gouldby@hrwallingford.com

www.fbclid2.com www.fbfma.org www.hrwallingford.co.uk