

Proud Platinum Sponsor of the ASFPM 2017 Annual Conference

Geolocation and Analysis of FEMA FIS Discharge Data

Jeff Smith, P.E., PMP, CFM

William Jiang, P.E., CFM

ASFPM 2017 Annual Conference "FLOOD RISK MANAGEMENT IN THE HEARTLAND"

Kansas City, Missouri, April 30–May 5

Project and Presentation Overview

- Geolocated 7,400 discharge points
 - In collaboration with FEMA, USGS
 Some analysis of overlap with USGS stream gages
 - Conducted initial post-compilation data analysis
 - Only flood sources with detailed flood studies
- Today's focus
 - Data of interest and how points were geolocated
 - Initial data interpretations
 - Next steps

Background

 FEMA has published thousands of discharges in its Flood Insurance Studies (FISs) via Summary of Discharge tables

TABLE 3- SUN	IMARY OF L	DISCHARGE	ES - continu	ed	
	PEAK DISCHARGES (cfs) % ANNUAL CHANCE				
FLOODING SOURCE	DRAINAGE	10-Percent Annual	2-Percent Annual	<u>1-Percent</u> Annual	0.2-Percent Annual
AND LOCATION	(sq. miles)	Chance	Chance	Chance	Chance
JONES HOLLOW Approximately 0.53 mile upstream of confluence with South River	5.15	850	ગર	2,300	3,800
LEWIS CREEK 100 feet west of Commerce Road and	15.2	7,830	13,000	15,300	21,100

- Spatial capture of such points historically not required
 - With implementation of updated FIS specifications in 2013, data may be captured and included in FEMA's National Flood Hazard Layer (NFHL)

Background (Cont'd)

- Primary, secondary NFHL datasets
 - S_NODES
 - L_SUMMARY_DISCHARGES
 - S_SUBBASINS
- Basic Approach
 - Transcribe FIS data
 - Geolocate points

o Intermediary, final database locations

- Create sub-basins
- Identify gage analyses (via Coordinated Needs Management Strategy [CNMS]), extract points for S_GAGE
- Compile and format data in NFHL format
- Compile "FIS error list" based on identified potential errors

- S_GAGE
- L_SOURCE_CIT

Data Transcription

- Extract historic data into database
 - PDF (text extractable or not), Word, Excel
 - Effective or pending/preliminary data if in progress
 - Input for L_SUMMARY_DISCHARGES table
- First reviews
 - Several algorithms in database environment to look for anomalies (mistranscriptions and FIS errors)
 - Drainage area/discharge relationships
 - Discharge relationships
 - o Missing, repeated information

Creation of S_NODES Point Layer

- Leverage transcribed data
- Reverse-place points based on drainage areas (DAs)
 - Use AECOM "Locate DA Points" tool
 - Two output layers hydro and CNMS
- Review point placement and adjust if needed
 - Location description/ ballpark placement

Locate	DA Points	-	_ 🗖	X
Select a stream layer with stream nam	ies:			
Select a Hydro-correct stream layer.				
			× 🖻	
Select a Flow Accumulation Raster:			✓	
Non Spatial Table of FIS Q Points:				
Counties to Process:				
New Output Shapefile for Q Points (al	ong DEM):			*
New Output Shapefile for Q Points (al	ong named stri	eams):		
New Output Shapefile for Links to Join	n Q Points:			[]

S_NODES - Review Point Placement

- Points don't always plot accurately
 - Data resolution, stream configuration differences, FIS errors, and limitation of tool
 - Coarser large-scale hydro-enforced datasets
 - In general, initial placement is good to excellent
- Visual review of plotted points
 - Using location description to verify "ballpark"
 - Manually adjust as needed
 - Points don't always fall within expected geography!
 - Enhanced investigations
 - Some set practices
 - o "At confluence"

PA FIS Discharge Points (5,541 Points)

Potomac Watershed FIS Discharge Points (1,854 Points)

S_SUBBASIN Creation

- Use USGS StreamStats 'Batch Processing Tool' to delineate basins
 - Points must snap to USGS stream raster
 - Second DA check
- USGS data include:
 - Drainage basin shapefile (used for S_SUBBASIN)
 - Peak discharge rates (used for initial assessment)

SUSGS Q	aller and	StreamSt	ats Version 3.0
	Ste	reamStats Ba	tch Processing Tool
This tool produces shapefiles that cont the points of interest will likely need to i and download the stream grid for your a interest below. The batch process will de	ain the delineated basins, basin be edited in GIS so that they are near of interest. The number of lineate the drainage areas and selected points. The user will	characteristics, and flow coincident with the street points in the shapefile get if checked, will compute to 11 be notified by email who	statutics for multiple sites requested a amgrid used by StreamStats for delineat rerally should not exceed 200, insert the asin characteristics, and/or estimate fit- rei to pick up the results when they are
Local D	5-14	State	
Cocal 4D	Pield	(ADDREV)	
Enter email Add	dress for completion notification	1	
🖉 Delineate	Compute Basin Chars	Compute Flow Stats	
	Select the 4 files to upload	a shapefile	
.SHP file	Oxone File No Re chosen		
,DBF file	Choose File No Re chosen		
.PRJ file	Choose File No Se choses		
_SHX file	Choose Fire No %e monen		

Final Review and Potential FIS Errors

- StreamStats DAs compare FIS DAs
 - Flagged for additional investigation when...
 - \circ If DA < 1 mi² AND error is > 50%, check
 - \circ If DA =< 10 mi² AND error is > 20%, check
 - \circ If DA > 10 mi² AND error is > 10%, check
 - If flagged but correct, left per FIS location description and noted as potential FIS error
- FIS Error Report
 - Unexpected, flagged DAs
 - Misspellings, invalid references, missing data
 - Organized by county FIS, to be corrected as other planned updates are funded

Data Analytics – Needs Assessment

- Conducted initial review of potential discharge validity in PA using USGSderived peak flows
 - Derived original study approach from CNMS
 - Regression (42%)
 - Gage Analysis (11%)
 - Rainfall Runoff Model (6%)
 - Other or Unknown (41%)
- Expected range between -30% and +43% given regression equation average prediction error
 - Falling outside range does not mean error!

Cumulative Density Plot

Q_{100-yr} Comparison Map

Drainage Area Influence

 In general, the percentage of points that fall within tolerance increases slightly as drainage area difference between FIS and USGS decreases

Draiange Area	Total Discharge	Points Within	Passing
Difference Tolerance	Points	Prediction Error	Rate
±36%	4828	3014	62.42%
±10%	4192	2652	63.26%
±5%	3640	2321	63.76%
±1%	2050	1316	64.19%

 The percentage of points that fall within tolerance was greatest amongst discharge points with drainage areas in between 10 mi² and 100 mi²

Draiange Area	Total Discharge	Points Within	Passing
Range (mi ²)	Points	Prediction Error	Rate
<1	280	157	56.07%
1 to 10	1970	1144	58.07%
10 to 100	1783	1226	68.76%
>100	802	491	61.22%

Further Investigation

- Lehigh HUC-8 Watershed
 - Ongoing FEMA Discovery project
 - 223 total discharge points
 - \circ 57% in expected range (95 points are outside of tolerance)
 - -43% valid when out of expected range

		CNMS Status		
Status	Total Points	Valid	Unverified	
In Expected Range	128	81	47	
Out of Expected Range	95	41	54	

Further Investigation (Cont'd)

- Investigated the hydrologic method applied to each flooding source per FIS
 - Generally, newer studies tended to be within the tolerance
 - Older studies and methods had sporadic results

County 🔻	STREAM 👻	Method	P or F 📑
BERKS	LITTLE LEHIGH CREEK	Reginal Regression Equation developed in USGS Water_resources Investigation 82-21, 1982	Pass
BERKS	LITTLE LEHIGH CREEK	Reginal Regression Equation developed in USGS Water_resources Investigation 82-21, 1982	Pass
BERKS	LITTLE LEHIGH CREEK	Reginal Regression Equation developed in USGS Water_resources Investigation 82-21, 1982	Pass
BERKS	LITTLE LEHIGH CREEK	Reginal Regression Equation developed in USGS Water_resources Investigation 82-21, 1982	Pass
BERKS	SWABIA CREEK	Reginal Regression Equation developed in USGS Water_resources Investigation 82-21, 1982	Fail
BERKS	TOAD CREEK	Reginal Regression Equation developed in USGS Water_resources Investigation 82-21, 1982	Pass
BERKS	TOAD CREEK	Reginal Regression Equation developed in USGS Water_resources Investigation 82-21, 1982	Pass
BERKS	TOAD CREEK	Reginal Regression Equation developed in USGS Water_resources Investigation 82-21, 1982	Pass
BERKS	TOAD CREEK	Reginal Regression Equation developed in USGS Water_resources Investigation 82-21, 1982	Pass
BERKS	TOAD CREEK	Reginal Regression Equation developed in USGS Water_resources Investigation 82-21, 1982	Pass
BERKS	TOAD CREEK	Reginal Regression Equation developed in USGS Water_resources Investigation 82-21, 1982	Fail
BERKS	TRIBUTARY A TO SWABIA CREEK	Reginal Regression Equation developed in USGS Water_resources Investigation 82-21, 1982	Fail
BERKS	TRIBUTARY B TO SWABIA CREEK	Reginal Regression Equation developed in USGS Water_resources Investigation 82-21, 1982	Fail

Potential Reasons for Difference

- Different hydrology methods
 - Regression, Gage, Rainfall Runoff, Rational Method, Others
- Currency of study
 - Republication of older studies (1970s et al)
 - · Availability of additional gage record
- Other factors
 - Land Use
 - \circ Urbanization
 - o Mining
 - Karst

Next Steps

- Data loaded to NFHL as FISs are updated
 - Cost-efficiency for FEMA
- Remaining Region III data to be compiled in 2017
- Further pilot applications and use
 - Evaluating use for needs assessment during Discovery meetings to be held summer 2017
 - Discuss applications with CNMS team
 - Further refinement of data analysis approach
 - $_{\odot}$ Similar to Lehigh watershed, focus on one county
 - Additional stratification of analysis, other data inputs to further refine assessment

Proud Platinum Sponsor of the ASFPM 2017 Annual Conference

MANAGING FLOOD RISK IN THE HEARTLAND

Thank you for participating!

Jeff Smith, P.E., PMP, CFM William Jiang, P.E., CFM

ASFPM 2017 Annual Conference "FLOOD RISK MANAGEMENT IN THE HEARTLAND"

Kansas City, Missouri, April 30-May 5