How Critical is Access to Key Facilities (and Vulnerable Populations) in a Flood Event?

Janey Camp, Madeline Allen, Leslie Gillespie-Marthaler, Mark Abkowitz
ASFPM 2019
Cleveland, OH
Objectives

• Improve understanding of vulnerability and resilience for communities

• Establish and demonstrate a method for evaluating a community’s transportation resilience

• Make available a scalable methodology
Case Study Area – Dyer County, TN

- River valley community with history of flooding
- Population ~34,000
 - 24% below age 18
 - 17% over age 65
 - 15% have a disability
 - 10% with no health insurance
 - Approx. 17% in poverty
Approach

• Perform initial flood loss assessment using Hazus for a range of scenarios
• Evaluate Hazus results, building damage estimates, and essential facility inventory in comparison with other sources of information
• Assess impacts of flood scenarios with a focus on vulnerable populations and transportation systems
Hazus Inundation Estimates
Comparison: Hazus (Level 1) vs FIRM

100-Year

500-Year

100-Year Hazus Flood
100-Year FIRM Flood

500-Year Hazus Flood
500-Year FIRM Flood
Building footprints from Microsoft building footprints made available in 2018

Note: Building footprints below 950 ft² were excluded from analysis, no distinction was made between residential or commercial/industrial
Vulnerable Populations (Age Over 65)
Vulnerable Populations (Low Income)
Roadway Impacts

62% inundated

<table>
<thead>
<tr>
<th>Road Type</th>
<th>Length (miles)</th>
<th>% Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>County</td>
<td>41.8</td>
<td>84%</td>
</tr>
<tr>
<td>Interstate</td>
<td>30.5</td>
<td>100%</td>
</tr>
<tr>
<td>Common Name</td>
<td>451.0</td>
<td>52%</td>
</tr>
<tr>
<td>State Recognized</td>
<td>168.3</td>
<td>86%</td>
</tr>
<tr>
<td>U.S.</td>
<td>111.3</td>
<td>95%</td>
</tr>
<tr>
<td>Not Categorized</td>
<td>85.0</td>
<td>45%</td>
</tr>
</tbody>
</table>
ArcGIS Network Analyst was used to compute baseline service areas, defined as the area that can be reached within 16.1 km (10 miles) of an essential facility.
Conclusions

• Understanding community vulnerabilities can be improved by augmenting with additional data sets
 • Hazus underestimates Flood extent, damaged buildings, and essential facilities (in a Level 1 analysis, which is most common for communities with limited resources)
• GIS analysis can be used to identify transportation system impacts and network disruptions
• Knowing that your essential facilities are “safe” may not be enough
Thank you!

Janey Camp
Janey.camp@Vanderbilt.edu

This material is based upon work supported by the U.S. Department of Transportation under Grant Award Number 69A3551747130 through the Maritime Transportation Research and Education Center (MarTREC) at the University of Arkansas and support through the US HUD Community Development Block Grant (CDBG) - National Disaster Resilience Competition (CDBG-NDR).